9,662 research outputs found

    Satellite Broadcasting Enabled Blockchain Protocol: A Preliminary Study

    Full text link
    Low throughput has been the biggest obstacle of large-scale blockchain applications. During the past few years, researchers have proposed various schemes to improve the systems' throughput. However, due to the inherent inefficiency and defects of the Internet, especially in data broadcasting tasks, these efforts all rendered unsatisfactory. In this paper, we propose a novel blockchain protocol which utilizes the satellite broadcasting network instead of the traditional Internet for data broadcasting and consensus tasks. An automatic resumption mechanism is also proposed to solve the unique communication problems of satellite broadcasting. Simulation results show that the proposed algorithm has a lower communication cost and can greatly improve the throughput of the blockchain system. Theoretical estimation of a satellite broadcasting enabled blockchain system's throughput is 6,000,000 TPS with a 20 gbps satellite bandwidth.Comment: Accepted by 2020 Information Communication Technologies Conference (ICTC 2020

    Heavy Higgs Bosons at Low tanβ\tan \beta: from the LHC to 100 TeV

    Get PDF
    We present strategies to search for heavy neutral Higgs bosons decaying to top quark pairs, as often occurs at low tanβ\tan \beta in type II two Higgs doublet models such as the Higgs sector of the MSSM. The resonant production channel is unsatisfactory due to interference with the SM background. We instead propose to utilize same-sign dilepton signatures arising from the production of heavy Higgs bosons in association with one or two top quarks and subsequent decay to a top pair. We find that for heavier neutral Higgs bosons the production in association with one top quark provides greater sensitivity than production in association with two top quarks. We obtain current limits at the LHC using Run I data at 8 TeV and forecast the sensitivity of a dedicated analysis during Run II at 14 TeV. Then we perform a detailed BDT study for the 14 TeV LHC and a future 100 TeV collider.Comment: published version, 22 pages, 15 figures, 3 table

    Creep fatigue life assessment of a pipe intersection with dissimilar material joint by linear matching method

    Get PDF
    As the energy demand increases the power industry has to enhance both efficiency and environmental sustainability of power plants by increasing the operating temperature. The accurate creep fatigue life assessment is important for the safe operation and design of current and future power plant stations. This paper proposes a practical creep fatigue life assessment case of study by the Linear Matching Method (LMM) framework. The LMM for extended Direct Steady Cycle Analysis (eDSCA) has been adopted to calculate the creep fatigue responses due to the cyclic loading under high temperature conditions. A pipe intersection with dissimilar material joint, subjected to high cycling temperature and constant pressure steam, is used as an example. The closed end condition is considered at both ends of main and branch pipes. The impact of the material mismatch, transitional thermal load, and creep dwell on the failure mechanism and location within the intersection is investigated. All the results demonstrate the capability of the method, and how a direct method is able to support engineers in the assessment and design of high temperature component in a complex loading scenario
    corecore